extension | φ:Q→Out N | d | ρ | Label | ID |
(S3×C3×C6)⋊1C22 = S3×D6⋊S3 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 48 | 8- | (S3xC3xC6):1C2^2 | 432,597 |
(S3×C3×C6)⋊2C22 = S3×C3⋊D12 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 24 | 8+ | (S3xC3xC6):2C2^2 | 432,598 |
(S3×C3×C6)⋊3C22 = D6⋊4S32 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 24 | 8+ | (S3xC3xC6):3C2^2 | 432,599 |
(S3×C3×C6)⋊4C22 = D6⋊S32 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 48 | 8- | (S3xC3xC6):4C2^2 | 432,600 |
(S3×C3×C6)⋊5C22 = (S3×C6)⋊D6 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 24 | 8+ | (S3xC3xC6):5C2^2 | 432,601 |
(S3×C3×C6)⋊6C22 = C3⋊S3⋊4D12 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 24 | 8+ | (S3xC3xC6):6C2^2 | 432,602 |
(S3×C3×C6)⋊7C22 = C3×S3×D12 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 48 | 4 | (S3xC3xC6):7C2^2 | 432,649 |
(S3×C3×C6)⋊8C22 = C3×D6⋊D6 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 48 | 4 | (S3xC3xC6):8C2^2 | 432,650 |
(S3×C3×C6)⋊9C22 = C3×S3×C3⋊D4 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 24 | 4 | (S3xC3xC6):9C2^2 | 432,658 |
(S3×C3×C6)⋊10C22 = C3×Dic3⋊D6 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 24 | 4 | (S3xC3xC6):10C2^2 | 432,659 |
(S3×C3×C6)⋊11C22 = C3⋊S3×D12 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 72 | | (S3xC3xC6):11C2^2 | 432,672 |
(S3×C3×C6)⋊12C22 = C12⋊S32 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 72 | | (S3xC3xC6):12C2^2 | 432,673 |
(S3×C3×C6)⋊13C22 = C3⋊S3×C3⋊D4 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 72 | | (S3xC3xC6):13C2^2 | 432,685 |
(S3×C3×C6)⋊14C22 = C62⋊23D6 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 36 | | (S3xC3xC6):14C2^2 | 432,686 |
(S3×C3×C6)⋊15C22 = C2×S33 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 24 | 8+ | (S3xC3xC6):15C2^2 | 432,759 |
(S3×C3×C6)⋊16C22 = C6×D6⋊S3 | φ: C22/C2 → C2 ⊆ Out S3×C3×C6 | 48 | | (S3xC3xC6):16C2^2 | 432,655 |
(S3×C3×C6)⋊17C22 = C6×C3⋊D12 | φ: C22/C2 → C2 ⊆ Out S3×C3×C6 | 48 | | (S3xC3xC6):17C2^2 | 432,656 |
(S3×C3×C6)⋊18C22 = C2×C33⋊6D4 | φ: C22/C2 → C2 ⊆ Out S3×C3×C6 | 144 | | (S3xC3xC6):18C2^2 | 432,680 |
(S3×C3×C6)⋊19C22 = C2×C33⋊7D4 | φ: C22/C2 → C2 ⊆ Out S3×C3×C6 | 72 | | (S3xC3xC6):19C2^2 | 432,681 |
(S3×C3×C6)⋊20C22 = S3×C32⋊7D4 | φ: C22/C2 → C2 ⊆ Out S3×C3×C6 | 72 | | (S3xC3xC6):20C2^2 | 432,684 |
(S3×C3×C6)⋊21C22 = C3×C6×D12 | φ: C22/C2 → C2 ⊆ Out S3×C3×C6 | 144 | | (S3xC3xC6):21C2^2 | 432,702 |
(S3×C3×C6)⋊22C22 = S3×D4×C32 | φ: C22/C2 → C2 ⊆ Out S3×C3×C6 | 72 | | (S3xC3xC6):22C2^2 | 432,704 |
(S3×C3×C6)⋊23C22 = C3×C6×C3⋊D4 | φ: C22/C2 → C2 ⊆ Out S3×C3×C6 | 72 | | (S3xC3xC6):23C2^2 | 432,709 |
(S3×C3×C6)⋊24C22 = S32×C2×C6 | φ: C22/C2 → C2 ⊆ Out S3×C3×C6 | 48 | | (S3xC3xC6):24C2^2 | 432,767 |
(S3×C3×C6)⋊25C22 = C22×S3×C3⋊S3 | φ: C22/C2 → C2 ⊆ Out S3×C3×C6 | 72 | | (S3xC3xC6):25C2^2 | 432,768 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(S3×C3×C6).1C22 = S32×Dic3 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 48 | 8- | (S3xC3xC6).1C2^2 | 432,594 |
(S3×C3×C6).2C22 = S3×C6.D6 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 24 | 8+ | (S3xC3xC6).2C2^2 | 432,595 |
(S3×C3×C6).3C22 = S3×C32⋊2Q8 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 48 | 8- | (S3xC3xC6).3C2^2 | 432,603 |
(S3×C3×C6).4C22 = (S3×C6).D6 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 24 | 8+ | (S3xC3xC6).4C2^2 | 432,606 |
(S3×C3×C6).5C22 = D6.S32 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 48 | 8- | (S3xC3xC6).5C2^2 | 432,607 |
(S3×C3×C6).6C22 = D6.4S32 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 48 | 8- | (S3xC3xC6).6C2^2 | 432,608 |
(S3×C3×C6).7C22 = D6.3S32 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 24 | 8+ | (S3xC3xC6).7C2^2 | 432,609 |
(S3×C3×C6).8C22 = D6⋊S3⋊S3 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 48 | 8- | (S3xC3xC6).8C2^2 | 432,610 |
(S3×C3×C6).9C22 = D6.6S32 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 48 | 8- | (S3xC3xC6).9C2^2 | 432,611 |
(S3×C3×C6).10C22 = C3×D12⋊5S3 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 48 | 4 | (S3xC3xC6).10C2^2 | 432,643 |
(S3×C3×C6).11C22 = C3×D12⋊S3 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 48 | 4 | (S3xC3xC6).11C2^2 | 432,644 |
(S3×C3×C6).12C22 = C3×D6.3D6 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 24 | 4 | (S3xC3xC6).12C2^2 | 432,652 |
(S3×C3×C6).13C22 = C3×D6.4D6 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 24 | 4 | (S3xC3xC6).13C2^2 | 432,653 |
(S3×C3×C6).14C22 = (C3×D12)⋊S3 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 144 | | (S3xC3xC6).14C2^2 | 432,661 |
(S3×C3×C6).15C22 = D12⋊(C3⋊S3) | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 72 | | (S3xC3xC6).15C2^2 | 432,662 |
(S3×C3×C6).16C22 = C62.90D6 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 72 | | (S3xC3xC6).16C2^2 | 432,675 |
(S3×C3×C6).17C22 = C62.91D6 | φ: C22/C1 → C22 ⊆ Out S3×C3×C6 | 72 | | (S3xC3xC6).17C2^2 | 432,676 |
(S3×C3×C6).18C22 = C3×S3×Dic6 | φ: C22/C2 → C2 ⊆ Out S3×C3×C6 | 48 | 4 | (S3xC3xC6).18C2^2 | 432,642 |
(S3×C3×C6).19C22 = C3×D6.D6 | φ: C22/C2 → C2 ⊆ Out S3×C3×C6 | 48 | 4 | (S3xC3xC6).19C2^2 | 432,646 |
(S3×C3×C6).20C22 = C3×D6.6D6 | φ: C22/C2 → C2 ⊆ Out S3×C3×C6 | 48 | 4 | (S3xC3xC6).20C2^2 | 432,647 |
(S3×C3×C6).21C22 = S32×C12 | φ: C22/C2 → C2 ⊆ Out S3×C3×C6 | 48 | 4 | (S3xC3xC6).21C2^2 | 432,648 |
(S3×C3×C6).22C22 = S3×C6×Dic3 | φ: C22/C2 → C2 ⊆ Out S3×C3×C6 | 48 | | (S3xC3xC6).22C2^2 | 432,651 |
(S3×C3×C6).23C22 = S3×C32⋊4Q8 | φ: C22/C2 → C2 ⊆ Out S3×C3×C6 | 144 | | (S3xC3xC6).23C2^2 | 432,660 |
(S3×C3×C6).24C22 = C12.73S32 | φ: C22/C2 → C2 ⊆ Out S3×C3×C6 | 72 | | (S3xC3xC6).24C2^2 | 432,667 |
(S3×C3×C6).25C22 = C12.57S32 | φ: C22/C2 → C2 ⊆ Out S3×C3×C6 | 144 | | (S3xC3xC6).25C2^2 | 432,668 |
(S3×C3×C6).26C22 = C12.58S32 | φ: C22/C2 → C2 ⊆ Out S3×C3×C6 | 72 | | (S3xC3xC6).26C2^2 | 432,669 |
(S3×C3×C6).27C22 = C4×S3×C3⋊S3 | φ: C22/C2 → C2 ⊆ Out S3×C3×C6 | 72 | | (S3xC3xC6).27C2^2 | 432,670 |
(S3×C3×C6).28C22 = S3×C12⋊S3 | φ: C22/C2 → C2 ⊆ Out S3×C3×C6 | 72 | | (S3xC3xC6).28C2^2 | 432,671 |
(S3×C3×C6).29C22 = C2×S3×C3⋊Dic3 | φ: C22/C2 → C2 ⊆ Out S3×C3×C6 | 144 | | (S3xC3xC6).29C2^2 | 432,674 |
(S3×C3×C6).30C22 = C32×C4○D12 | φ: C22/C2 → C2 ⊆ Out S3×C3×C6 | 72 | | (S3xC3xC6).30C2^2 | 432,703 |
(S3×C3×C6).31C22 = C32×D4⋊2S3 | φ: C22/C2 → C2 ⊆ Out S3×C3×C6 | 72 | | (S3xC3xC6).31C2^2 | 432,705 |
(S3×C3×C6).32C22 = C32×Q8⋊3S3 | φ: C22/C2 → C2 ⊆ Out S3×C3×C6 | 144 | | (S3xC3xC6).32C2^2 | 432,707 |
(S3×C3×C6).33C22 = S3×C6×C12 | φ: trivial image | 144 | | (S3xC3xC6).33C2^2 | 432,701 |
(S3×C3×C6).34C22 = S3×Q8×C32 | φ: trivial image | 144 | | (S3xC3xC6).34C2^2 | 432,706 |